Knowledge Organiser: Year 9 Maths; Sequences and Straight Line Graphs

Orithmetic/Geometric sequences

Orithmetic Sequences change by a common difference. This is found by addition or subtraction between terms

Geometric Sequences change by a common ratio. This is found my multiplication/division between terms.

Term to term rule — how you get from one term (number in the sequence) to the next term.

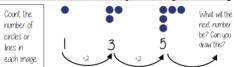
Position to term rule — take the rule and substitute in a position to find a term. Eq. Multiply the position number by 3 and then add 2

ii Other sequences

Fibonacci Sequence

Each term is the sum of the previous two terms

Triangular Numbers — look at the formation

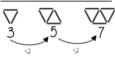


Square Numbers — look at the formation

Sequences are the repetition of a patten

Describe and continue a sequence diagrammaticallu

Sequence in a table and araphicallu


Because the terms increase by the same addition each time this

Term: the number or variable

is **linear** — as seen in the araidh

(the number of squares in each image)

Predict and check terms

Predictions:

Look at your pattern and consider how it will increase.

e.g. How many lines in pattern

Prediction - 13

If it is increasing by 2 each time - in 3 more patterns there will be 6 more lines

Linear and Non Linear Sequences

Linear Sequences — increase by addition or subtraction and the same amount each time Non-linear Sequences — do not increase by a constant amount — quadratic, aeometric

Do not plot as straight lines when modelled graphically

The differences between terms can be found by addition, subtraction, multiplication or

Fibonacci Sequence — look out for this tupe of sequence

Each term is the sum of the previous two terms

Continue Linear Sequences

7, 11, 15, 19...

How do I know this is a linear sequence?

It increases by adding 4 to each term. How many terms do I need to make this conclusion?

Ot least 4 terms — two terms only shows one difference not if this difference is constant (a common difference).

How do I continue the sequence?

You continue to repeat the same difference through the next positions in the

Explain term-to-term rule How you get from term to term

Continue non-linear Sequences

1, 2, 4, 8, 16 ...

How do I know this is a non-linear sequence:

It increases by multiplying the previous term by 2 -this is a geometric sequence because the constant is multiply by 2

How many terms do I need to make this conclusion?

The next term is found by tripling

the previous term.

Ot least 4 terms — two terms only shows one difference not if this difference is constant. (a common difference).

How do I continue the sequence?

You continue to repeat the same difference through the next positions in the sequence.

Sequences from algebraic rules This is substitution!

"The term in

has 7 squares"

position 3

Graphically

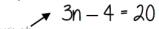
This will be linear - note the single power of n. The values increase at a

constant rate

Substitute the number of the term you are looking for in place of 'n'

This is not linear as there is a

power for n


|st term = 2(1) - 5 = -3

 2^{nd} term = 2(2) - 5 = -1

 100^{th} term = 2 (100) - 5 = 195

I Checking for a term in a sequence Form *a*n equation

Is 201 in the sequence 3n - 4?

Solving this will find the position of the term in the sequence. I ONLY an integer solution can be in the sequence.

Term to check

XOD I

Try to explain this in full sentences not just with mathematical notation. Use key maths language — doubles, halves, multiply by two, aidd four to the previous term etc.

To explain a whole sequence you need to include a term to begin at...

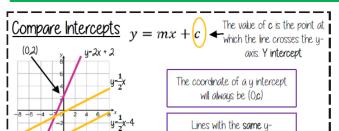
Finding the algebraic rule

→ 4. 8. I2. I6. 20.... This has the same constant 7. 11. 15. 19. 22 ← difference - but is 3 more than the original sequence

4n + 3

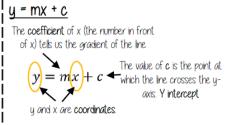
This is the constant in the sequence

difference between the terms


(difference) between the original and new sequence

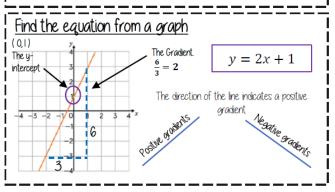
This is the comparison

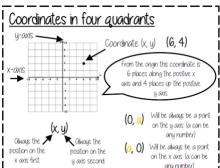
Olaebraic ruk

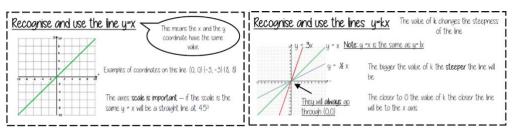

Knowledge Organiser: Year 9 Maths; Sequences and Straight Line Graphs

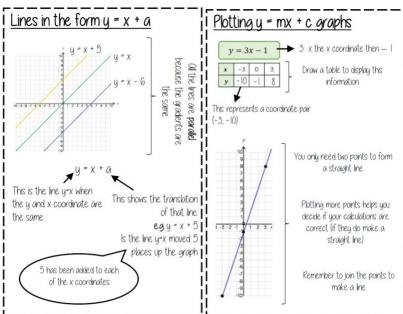
intercept cross in the same

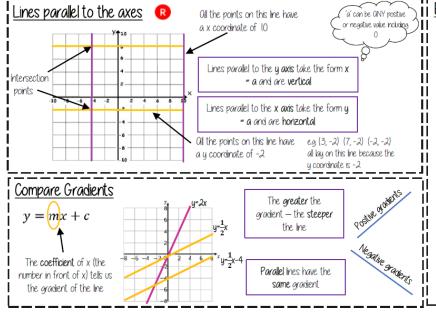
place

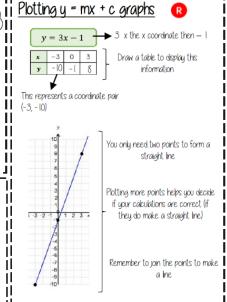

The equation of a line
can be rearranged: E.g.:


y = c + mx
c = y — mx
Identify which coefficient
you are identifying or
comparing


<u>Keywords</u>


Quadrant: four quarters of the coordinate plane.
Coordinate: a set of values that show an exact position
Horizontal: a straight line from left to right (parallel to the x axis)
Vertical: a straight line from top to bottom (parallel to the y axis)
Origin: (0,0) on a graph. The point the two axes cross
Parallel: Lines that never meet


Parallel: Lines that never meet Gradient: The steepness of a line Intercept: Where lines cross



How do we use Knowledge Organisers in Mathematics?

How can you use knowledge organisers at home to help us?

- **Retrieval Practice**: Read over a section of the knowledge organiser, cover it up and then write down everything you can remember. Repeat until you remember everything.
- **Flash Cards:** Using the Knowledge Organisers to help on one side of a piece of paper write a question, on the other side write an answer. Ask someone to test you by asking a question and seeing if you know the answer.
- **Mind Maps:** Turn the information from the knowledge organiser into a mind map. Then reread the mind map and on a piece of paper half the size try and recreate the key phrases of the mind map from memory.
- **Sketch it**: Draw an image to represent each fact; this can be done in isolation or as part of the mind map/flash card.
- **Teach it:** Teach someone the information on your knowledge organiser, let them ask you questions and see if you know the answers.

How will we use knowledge organisers in Mathematics?

Knowledge organisers will be used before I complete a Learning Check or Common Assessment. I will spend part of the lesson looking over each of the key topics of the half term before completing the Learning Check or Common Assessment.

I will also use these at home to complete my own independent learning and revision of these key topics.