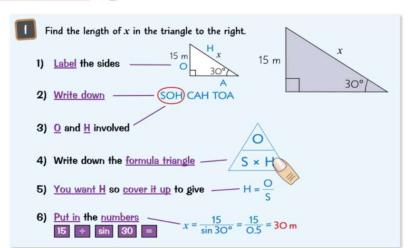
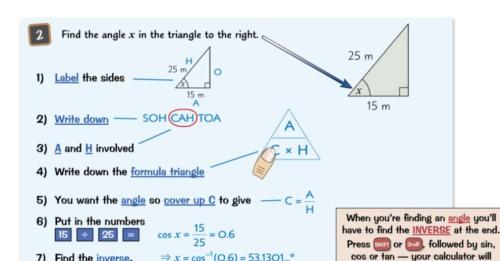
Knowledge Organiser: Year 9 Maths; Pythagoras and Trigonometry (Part 2)

Trigonometry — Examples


Here are some lovely examples using the method from the previous page to help you through the trials of trig.


Examples:

7) Find the inverse.

shift cos 0.6 =

 $=53.1^{\circ}(1 d.p.)$

display sin-1, cos-1 or tan-1

Trigonometry — Common Values

Now that you're in the swing of trigonometry questions it's time to put those calculators away. Sorry.

Learn these Common Trig Values

The tables below contain a load of useful trig values. You might get asked to work out some exact trig answers in your non-calculator exam, so having these in your brain will come in handy.

$$\sin 30^{\circ} = \frac{1}{2}$$
 $\sin 60^{\circ} = \frac{\sqrt{3}}{2}$ $\sin 45^{\circ} = \frac{1}{\sqrt{2}}$ $\cos 30^{\circ} = \frac{\sqrt{3}}{2}$ $\cos 60^{\circ} = \frac{1}{2}$ $\cos 45^{\circ} = \frac{1}{\sqrt{2}}$

$$\cos 45^\circ = \frac{1}{\sqrt{2}}$$

$$\tan 30^\circ = \frac{1}{\sqrt{3}} \qquad \quad \tan 60^\circ = \sqrt{3} \qquad \quad \tan 45^\circ = 1$$

$$\tan 0^{\circ} = 0$$

 $\cos 0^{\circ} = 1$

$$\sin 90^\circ = 1$$
 $\sin 0^\circ = 0$

 $\cos 90^{\circ} = 0$

EXAMPLES:

Without using a calculator, find the exact length of side b in the right-angled triangle shown.

Have a look at the examples below -

1) It's a right-angled triangle so use SOH CAH TOA to pick the correct trig formula to use.

- 2) Put in the numbers from the diagram in the guestion. $b = \cos 30^{\circ} \times 7$
- 3) You know the value of cos 30°, so substitute this in.

$$b = \frac{\sqrt{3}}{2} \times 7 = \frac{7\sqrt{3}}{2} \text{ cm}$$

2. Without using a calculator, show that $\cos 60^{\circ} + \sin 30^{\circ} = 1$

Put in the right values for cos 60° and sin 30°, then do the sum.

$$\cos 60^{\circ} = \frac{1}{2} \quad \sin 30^{\circ} = \frac{1}{2}$$

$$\cos 60^{\circ} + \sin 30^{\circ} = \frac{1}{2} + \frac{1}{2} = 1$$

How do we use Knowledge Organisers in Mathematics?

How can you use knowledge organisers at home to help us?

- **Retrieval Practice**: Read over a section of the knowledge organiser, cover it up and then write down everything you can remember. Repeat until you remember everything.
- **Flash Cards**: Using the Knowledge Organisers to help on one side of a piece of paper write a question, on the other side write an answer. Ask someone to test you by asking a question and seeing if you know the answer.
- **Mind Maps:** Turn the information from the knowledge organiser into a mind map. Then reread the mind map and on a piece of paper half the size try and recreate the key phrases of the mind map from memory.
- **Sketch it**: Draw an image to represent each fact; this can be done in isolation or as part of the mind map/flash card.
- **Teach it:** Teach someone the information on your knowledge organiser, let them ask you questions and see if you know the answers.

How will we use knowledge organisers in Mathematics?

Knowledge organisers will be used before I complete a Learning Check or Common Assessment. I will spend part of the lesson looking over each of the key topics of the half term before completing the Learning Check or Common Assessment.

I will also use these at home to complete my own independent learning and revision of these key topics.

GLUE HERE