Knowledge Organiser: Year 9 Maths; Transformations (Part 1)

The Four Transformations

There are four transformations you need to know - translation, rotation, reflection and enlargement.

1) Translations

In a <u>translation</u>, the <u>amount</u> the shape moves by is given as a <u>vector</u> (see p.103-104) written $\begin{pmatrix} x \\ y \end{pmatrix}$ — where x is the <u>horizontal movement</u> (i.e. to the <u>right</u>) and y is the <u>vertical movement</u> (i.e. <u>up</u>). If the shape moves left and down, x and y will be negative.

- a) Describe the transformation that maps triangle P onto Q.
- b) Describe the transformation that maps triangle P onto R.
- a) To get from P to Q₄ you need to move $\frac{8 \text{ units left}}{6}$ and $\frac{6 \text{ units up.}}{6}$ so...

 The transformation from P to Q is a translation by the vector $\begin{pmatrix} -8 \\ 6 \end{pmatrix}$
- b) The transformation from P to R is a translation by the vector $\begin{pmatrix} O \\ 7 \end{pmatrix}$

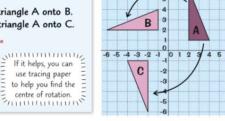
2) Rotations

To describe a rotation, you must give 3 details:

- 1) The angle of rotation (usually 90° or 180°).
- 2) The direction of rotation (clockwise or anticlockwise).
- 3) The centre of rotation (often, but not always, the origin).

For a rotation of 180°, it doesn't matter whether you go clockwise or anticlockwise.

- a) Describe the transformation that maps triangle A onto B.
- b) Describe the transformation that maps triangle A onto C.
- a) The transformation from A to B is a rotation of <u>90</u>° anticlockwise about the <u>origin</u>.
- b) The transformation from A to C is a rotation of 180° clockwise (or anticlockwise) about the origin.

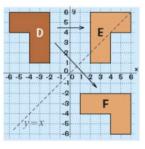


3) Reflections

For a reflection, you must give the equation of the mirror line.

EXAMPLE:

- a) Describe the transformation that maps shape D onto shape E.
- b) Describe the transformation that maps shape D onto shape F.
- a) The transformation from D to E is a reflection in the y-axis.
- b) The transformation from D to F is a reflection in the line y = x.



The Four Transformations

One more transformation coming up - enlargements. They're the trickiest, but also the most fun (honest).

4) Enlargements

For an enlargement, you must specify:

1)	The scale factor.	scale factor = $\frac{\text{new length}}{\text{old length}}$
2)	The centre of enlargement.	

- 1) The <u>scale factor</u> for an enlargement tells you <u>how long</u> the sides of the new shape are compared to the old shape. E.g. a scale factor of 3 means you <u>multiply</u> each side length by 3.
- 2) If you're given the centre of enlargement, then it's vitally important where your new shape is on the grid.

The <u>scale factor</u> tells you the <u>RELATIVE DISTANCE</u> of the old points and new points from the <u>centre of enlargement</u>.

So, a scale factor of 2 means the corners of the enlarged shape are twice as far from the centre of enlargement as the corners of the original shape.

Describing Enlargements

EXAMPLE: Describe the transformation that maps Triangle A onto Triangle B.

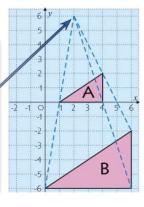
Use the formula to find the scale factor. (Just do this for one pair of sides.)

Old length of triangle base = 3 units New length of triangle base = 6 units

Scale factor =
$$\frac{\text{new length}}{\text{old length}} = \frac{6}{3} = \frac{2}{3}$$

To find the <u>centre of enlargement</u>, draw <u>lines</u> that go through <u>matching corners</u> of both shapes and see where they <u>cross</u>.

So the transformation is an enlargement of scale factor 2, centre (2, 6).

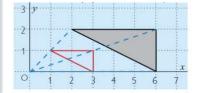


Fractional Scale Factors

- 1) If the scale factor is bigger than 1 the shape gets bigger.
- 2) If the scale factor is smaller than 1 (e.g. $\frac{1}{2}$) it gets smaller.

Example: Enlarge the shaded shape by a scale factor of $\frac{1}{2}$ about centre O.

- <u>Draw lines</u> going from the <u>centre</u> to <u>each corner</u> of the original shape. The corners of the new shape will be on these lines.
- 2) The scale factor is $\frac{1}{2}$, so make <u>each corner</u> of the new shape half as far from O as it is in the original shape.



How do we use Knowledge Organisers in Mathematics?

How can you use knowledge organisers at home to help us?

- **Retrieval Practice**: Read over a section of the knowledge organiser, cover it up and then write down everything you can remember. Repeat until you remember everything.
- **Flash Cards**: Using the Knowledge Organisers to help on one side of a piece of paper write a question, on the other side write an answer. Ask someone to test you by asking a question and seeing if you know the answer.
- **Mind Maps:** Turn the information from the knowledge organiser into a mind map. Then reread the mind map and on a piece of paper half the size try and recreate the key phrases of the mind map from memory.
- **Sketch it**: Draw an image to represent each fact; this can be done in isolation or as part of the mind map/flash card.
- **Teach it:** Teach someone the information on your knowledge organiser, let them ask you questions and see if you know the answers.

How will we use knowledge organisers in Mathematics?

Knowledge organisers will be used before I complete a Learning Check or Common Assessment. I will spend part of the lesson looking over each of the key topics of the half term before completing the Learning Check or Common Assessment.

I will also use these at home to complete my own independent learning and revision of these key topics.

GLUE HERE