Surds

- A root such as $\sqrt{3}$ that cannot be written exactly as a fraction is IRRATIONAL
- An expression that involves irrational roots is in SURD FORM e.g. $2\sqrt{3}$
- 3 + $\sqrt{2}$ and 3 $\sqrt{2}$ are CONJUGATE/COMPLEMENTARY surds needed to rationalise the denominator

 $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

П

SIMPLIFYING
$$\sqrt{ab} = \sqrt{a} \times \sqrt{b}$$

Simplify
$$\sqrt{75} - \sqrt{12}$$

$$= \sqrt{5 \times 5 \times 3} - \sqrt{2 \times 2 \times 3}$$

$$= 5\sqrt{3} - 2\sqrt{3}$$

$$= 3\sqrt{3}$$

RATIONALISING THE DENOMINATOR (removing the surd in the denominator)

a + \sqrt{b} and a - \sqrt{b} are CONJUGATE/COMPLEMENTARY surds — the product is always a rational number

Rationalise the denominator
$$\frac{2}{2-\sqrt{3}}$$

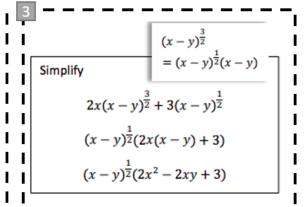
$$=\frac{2}{2-\sqrt{3}} \times \frac{2+\sqrt{3}}{2+\sqrt{3}}$$

$$=\frac{4+2\sqrt{3}}{4+2\sqrt{3}-2\sqrt{3}-3}$$

$$=4+2\sqrt{3}$$

Multiply the numerator and denominator by the conjugate of the denominator

Indices


Rules to learn

$$x^a \times x^b = x^{a+b}$$
 $x^{-a} = \frac{1}{x^a}$

$$x^a \div x^b = x^{a-b} \qquad x^{\frac{1}{n}} = \sqrt[n]{x}$$

$$(x^a)^b = x^{ab} x^{\frac{m}{n}} = \sqrt[n]{x^m}$$

Solve the equation $25^{x} = (5^{2})^{x}$ $3^{2x} \times 25^{x} = 15$ $(3 \times 5)^{2x} = (15)^{1}$ 2x = 1 $x = \frac{1}{2}$

How do we use Knowledge Organisers in Mathematics?

How can you use knowledge organisers at home to help us?

- **Retrieval Practice**: Read over a section of the knowledge organiser, cover it up and then write down everything you can remember. Repeat until you remember everything.
- **Flash Cards:** Using the Knowledge Organisers to help on one side of a piece of paper write a question, on the other side write an answer. Ask someone to test you by asking a question and seeing if you know the answer.
- **Mind Maps:** Turn the information from the knowledge organiser into a mind map. Then reread the mind map and on a piece of paper half the size try and recreate the key phrases of the mind map from memory.
- **Sketch it**: Draw an image to represent each fact; this can be done in isolation or as part of the mind map/flash card.
- **Teach it**: Teach someone the information on your knowledge organiser, let them ask you questions and see if you know the answers.

How will we use knowledge organisers in Mathematics?

Knowledge organisers will be used before I complete a Learning Check or Common Assessment. I will spend part of the lesson looking over each of the key topics of the half term before completing the Learning Check or Common Assessment.

I will also use these at home to complete my own independent learning and revision of these key topics.

Simultaneous Equation

Solving by elimination

$$3x - 2y = 19 \times 3 9x - 6y = 57$$

$$2x - 3y = 21$$
 $\times 2$ $4x - 6y = 42$

Using the discriminant

 $b^2 - 4ac > 0$ the graphs intersect at 2 distinct points

 $b^2 - 4ac = 0$ the graphs intersect at 1 point (tangent)

 $b^2 - 4a < 0$ the graphs do not intersect

Solving by substitution

$$x+y=1$$
 rearranges to $y=1-x$

$$x^2 + y^2 = 25$$

$$x^2 + (1 - x)^2 = 25$$

 $x^2 + 1 - 2x + x^2 - 25 = 0$

$$2x^2 - 2x - 24 = 0$$

$$2(x^2 - x - 12) = 0$$

$$2(x-4)(x+3)=0$$
 $x=4$

$$x = 4$$
 $x = -3$
 $y = -3$ $y = 4$

Inequalities

Quadratic Equation and Graphs

Linear Inequality

This can be solved like a linear equation except that

Multiplying or Dividing by a negative value reverses the inequality

- Factorising identifying the roots of the equation $ax^2 + bc + c = 0$ Look out for the difference of 2 squares x² - a²= (x - a)(x + a)
- Look out for the perfect square $x^2 + 2ax + a^2 = (x + a)^2$ or $x^2 2ax + a^2 = (x a)^2$
- Look out for equations which can be transformed into quadratic equations

Quadratic Inequality – always a good idea to sketch the graph!

Solve
$$x^2 + 4x - 5 < 0$$

$$x^2 + 4x - 5 = 0$$

$$(x-1)(x+5)=0$$

$$x = 1 \ x = -5$$

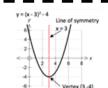
$$4x^2 - 25 = 0$$

$$(2x-5)(2x+5)=0$$

$$x = \frac{3}{2} x = -\frac{3}{2}$$

$$x^2 + 4x - 5 < 0$$

$$x^2 + 4x - 5 < 0$$


which can be written as $\{x: x > -5\} \cap \{x: x < 1\}$

$$x \le -\frac{5}{2} \text{ or } x \ge \frac{5}{2}$$

which can be written as

$$\{x : x \le -\frac{5}{2} \} \cup \{x : x \ge \frac{5}{2} \}$$

Completing the square - Identifying the vertex and line of symmetry In completed square form $y = (x + a)^2 + b$

Sketch the graph of

$$y = 4x - x^2 - 1$$

 $y = -(x^2 - 4x) - 1$
 $y = -((x - 2)^2 - 4) - 1$

Quadratic formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 for solving ax² + bx + c = 0

The **DISCRIMINANT** b² – 4ac can be used to identify the number of solutions

- $b^2 4ac > 0$ there are 2 real and distinct roots (the graphs crosses the x- axis in 2 places)
- $b^2 4ac = 0$ the is a single repeated root (the x-axis is a tangent to the graph)
- $b^2 4ac < 0$ there are no 2 real roots (the graph does not touch or cross the x-axis)

How do we use Knowledge Organisers in Mathematics?

How can you use knowledge organisers at home to help us?

- **Retrieval Practice**: Read over a section of the knowledge organiser, cover it up and then write down everything you can remember. Repeat until you remember everything.
- **Flash Cards:** Using the Knowledge Organisers to help on one side of a piece of paper write a question, on the other side write an answer. Ask someone to test you by asking a question and seeing if you know the answer.
- **Mind Maps**: Turn the information from the knowledge organiser into a mind map. Then reread the mind map and on a piece of paper half the size try and recreate the key phrases of the mind map from memory.
- **Sketch it**: Draw an image to represent each fact; this can be done in isolation or as part of the mind map/flash card.
- **Teach it**: Teach someone the information on your knowledge organiser, let them ask you questions and see if you know the answers.

How will we use knowledge organisers in Mathematics?

Knowledge organisers will be used before I complete a Learning Check or Common Assessment. I will spend part of the lesson looking over each of the key topics of the half term before completing the Learning Check or Common Assessment.

I will also use these at home to complete my own independent learning and revision of these key topics.