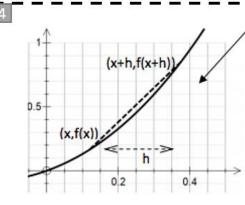

Differentiation

The gradient is denoted by f'(x) is the function is given as f(x)

$$y = x^n \quad \frac{dy}{dx} = nx^{n-1}$$

$$y = x^n$$
 $\frac{dy}{dx} = nx^{n-1}$ $y = ax^n$ $\frac{dy}{dx} = nax^{n-1}$ $y = a$ $\frac{dy}{dx} = 0$

$$y = a \frac{dy}{dx} = 0$$


Using Differentiation

The gradient of a curve at a given point = gradient of the tangent to the curve at that point The gradient of the normal is perpendicular to the gradient of the tangent that point

Stationary (Turning) Points

- The points where $\frac{dy}{dx} = 0$ are stationary points (turning points/points of inflection) of a graph
- The nature of the turning points can be found by:

Differentiation from first principles

As h approaches zero the gradient of the chord gets closer to being the gradient of the tangent at the point

$$f'(x) = \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \right)$$

Find from first principles the derivative of $x^3 - 2x + 3$

$$f'(x) = \lim_{h \to 0} \left(\frac{f(x+h) - f(x)}{h} \right)$$

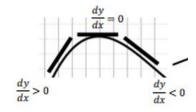
$$= \lim_{h \to 0} \left(\frac{(x+h)^3 - 2(x+h) + 3 - (x^3 - 2x + 3)}{h} \right)$$

$$= \lim_{h \to 0} \left(\frac{x^3 + 3x^2h + 3xh^2 + h^3 - 2x - 2h + 3 - x^3 + 2x - 3)}{h} \right)$$

$$= \lim_{h \to 0} \left(\frac{3x^2h + 3xh^2 + h^3 - 2h}{h} \right)$$

$$= \lim_{h \to 0} (3x^2 + 3xh + h^2 - 2)$$

$$= 3x^2 - 2$$


Calculating the gradient close to the point

Differentiating (again) to find $\frac{d^2y}{dx^2}$ or f''(x)

Maximum if
$$\frac{d^2y}{dx^2} < 0$$

$$Minimum if \frac{d^2y}{dx^2} > 0$$

Maximum point

Minimum Point

How do we use Knowledge Organisers in Mathematics?

How can you use knowledge organisers at home to help us?

- **Retrieval Practice**: Read over a section of the knowledge organiser, cover it up and then write down everything you can remember. Repeat until you remember everything.
- **Flash Cards:** Using the Knowledge Organisers to help on one side of a piece of paper write a question, on the other side write an answer. Ask someone to test you by asking a question and seeing if you know the answer.
- **Mind Maps:** Turn the information from the knowledge organiser into a mind map. Then reread the mind map and on a piece of paper half the size try and recreate the key phrases of the mind map from memory.
- **Sketch it:** Draw an image to represent each fact; this can be done in isolation or as part of the mind map/flash card.
- **Teach it**: Teach someone the information on your knowledge organiser, let them ask you questions and see if you know the answers.

How will we use knowledge organisers in Mathematics?

Knowledge organisers will be used before I complete a Learning Check or Common Assessment. I will spend part of the lesson looking over each of the key topics of the half term before completing the Learning Check or Common Assessment.

I will also use these at home to complete my own independent learning and revision of these key topics.