Integration

1

Integration is the reverse of differentiation

2

$$\int x^n dx = \frac{x^{n+1}}{n+1} + c$$
 (c is the constant of integration)

$$\int e^{kx} dx = \frac{1}{k} e^{kx} + c$$

$$\int \frac{1}{x} dx = \ln x + c$$

$$\int \sin kx \, dx = -\frac{1}{k} \cos kx + c$$

$$\int \cos kx \, dx = \frac{1}{k} \sin kx + c$$

Parametric Integration

To find the area under a curve defined parametrically use area $\int y \frac{dx}{dy} dt$

Remember that the limits of the integral must be in terms of \boldsymbol{t}

The area under a graph can be approximated using rectangle of height y and width dx. The limit as the number of rectangles increases is equal to definite integral

$$\lim_{n \to \infty} \sum_{i=1}^{n} y_i \partial x = \int_{a}^{b} y dx$$

3

INTEGRATION BY SUBSTITUTION

Transforming a complex integral into a simpler integral using 'u = ' and integrating with respect to u

$$\int x\sqrt{1-x^2} \, dx$$
Let $u = 1 - x^2 \frac{du}{dx} = -2x$ so $dx = \frac{du}{-2x}$

$$\int x\sqrt{1-x^2} \, dx = \int x\sqrt{u} \frac{du}{-2x}$$

$$= -\frac{1}{2} \int u^{\frac{1}{2}} \, du$$

$$= -\frac{1}{3} u^{\frac{3}{2}} + c$$

$$= -\frac{1}{3} (1-x^2)^{\frac{3}{2}} + c$$

If it is a definite integral it is often easier to calculate the limits in terms of u and substitute these in after integrating

Look for integrals of the form

$$\int e^{ax+b} dx$$
 $\int \cos(ax+b) dx$ $\int \frac{1}{ax+b} dx$

INTEGRATION BY PARTS

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

Take care in defining u and $\frac{dv}{dx}$

$$\int xe^{2x} dx \qquad u = x \quad \frac{dv}{dx} = e^{2x}$$

$$\int x\ln dx \qquad u = \ln x \quad \frac{dv}{dx} = x$$

How do we use Knowledge Organisers in Mathematics?

How can you use knowledge organisers at home to help us?

- **Retrieval Practice**: Read over a section of the knowledge organiser, cover it up and then write down everything you can remember. Repeat until you remember everything.
- **Flash Cards**: Using the Knowledge Organisers to help on one side of a piece of paper write a question, on the other side write an answer. Ask someone to test you by asking a question and seeing if you know the answer.
- **Mind Maps**: Turn the information from the knowledge organiser into a mind map. Then reread the mind map and on a piece of paper half the size try and recreate the key phrases of the mind map from memory.
- **Sketch it:** Draw an image to represent each fact; this can be done in isolation or as part of the mind map/flash card.
- **Teach it**: Teach someone the information on your knowledge organiser, let them ask you questions and see if you know the answers.

How will we use knowledge organisers in Mathematics?

Knowledge organisers will be used before I complete a Learning Check or Common Assessment. I will spend part of the lesson looking over each of the key topics of the half term before completing the Learning Check or Common Assessment.

I will also use these at home to complete my own independent learning and revision of these key topics.

GLUE HERE