Knowledge Organiser: Year 10 (Foundation 1-3)

HCF - 'Highest Common Factor'

'Highest Common Factor' - all it means is this:
The BICCEST number that will DIVIDE INTO ALL the numbers in question.

Real-Life LCM and HCF Questions

You might be asked a wordy real-life LCM or HCF question in your exam - these can be tricky to spot at first, but once you have done, the method's just the same.

METHOD:

1) LIST the FACTORS of ALL the numbers.
2) Find the BIGGEST one that's in ALL the lists.
3) Easy peasy innit?

EXAMPLE:

Find the highest common factor (HCF) of 36,54 , and 72 .
Factors of 36 are: 1, 2, 3, 4, 6, 9, 12, 18. 36
Factors of 54 are: $1,2,3,6,9,18,27,54$
Factors of 72 are: 1, 2, 3, 4, 6, 8, 9, 12, 18. 24, 36, 72
So the highest common factor (HCF) of 36,54 and 72 is 18 . Told you it was easy.

Just take care listing the factors - make sure you use the proper method (as shown on the previous page) or you'll miss one and blow the whole thing out of the water.

LCM — 'Lowest Common Multiple’

'Lowest Common Multiple' - sure, it sounds kind of complicated, but all it means is this:
The SMALLEST number that will DIVIDE BY ALL the numbers in question.

METHOD:

1) LIST the MULTIPLES of ALL the numbers
2) Find the SMALLEST one that's in ALL the lists.
3) Easy peasy innit?

W11 1111111111111111111 ,
The LCM is sometimes called The LCM is sometimes called the Least (instead of Lowest) Common Multiple.

EXAMPLE
Find the lowest common multiple (LCM) of 12 and 15.
Multiples of 12 are:
$12,24,36,48,60.72,84,96$
Multiples of 15 are:
15, 30, 45, 60, 75, 90, 105,

EXAMPLE:

Maggie is making party bags. She has 60 balloons, 48 lollipops and 84 stickers. She wants to use them all. Each type of item must be distributed equally between the party bags. What is the maximum number of party bags she can make?

> You could use the prime factorisation method here if you wanted - use whichever method's easier for you. Factors of 60 are: $1,2,3,4,5,6,10,12.15,20,30,60$ Factors of 48 are: $1,2,3,4,6,8,12.16,24,48$ Factors of 84 are: $1,2,3,4,6,7,12.14,21,28,42,84$ The highest common factor (HCF) of 6O, 48 and 84 is 12 , so the maximum number of party bags Maggie can make is 12 .

Fractions without a Calculator

3) Multiplying

Multiply top and bottom separately. Then simplify your fraction as far as possible.

```
EXAMMPLE: Find }\frac{8}{5}\times\frac{7}{12}\mathrm{ .
```

Multiply the top and bottom separately:
$\frac{8}{5} \times \frac{7}{12}=\frac{8 \times 7}{5 \times 12}$
Then simplify - top and bottom both divide by 4.

$$
=\frac{56}{60}=\frac{14}{15}
$$

4) Dividing

So the lowest common multiple (LCM) of 12 and 15 is 60 .

$$
\text { EXAMPLE: Find } 2 \frac{1}{3} \div 3 \frac{1}{2} \text {. }
$$

When you're multiplying or dividing when you're multiplying or dividing wem into improper, fractions furn Told you it was easy.

Rewrite the mixed numbers as improper fractions:
Turn $\frac{7}{2}$ upside down and multiply: $\quad=\frac{7}{3} \times \frac{2}{7}=\frac{7 \times 2}{3 \times 7}$
Simplify - top and bottom both divide by $7 . \quad=\frac{14}{21}=\frac{2}{3}$

Area Formulas for Triangles and Quadrilaterals

(3)

Learn these formulas:

Area of triangle $=1 / 2 \times$ base \times vertical height
$A=1 / 2 \times b \times h$
Note that in each case the height must be the vertical height, not the sloping height.

Ratios

Proportional Division (4)

In a proportional division question a TOTAL AMOUNT is split into parts in a certain ratio. The key word here is PARTS - concentrate on 'parts' and it all becomes quite painless:

EXAMPLE: Jess, Mo and Greg share $£ 9100$ in the ratio 2:4:7. How much does Mo get?

1) ADD UP THE PARTS:

The ratio 2:4:7 means there will be a total of 13 parts: $\quad 2+4+7=13$ parts
2) DIVIDE TO FIND ONE "PART":

Just divide the total amount by the number of parts: $£ 9100 \div 13=£ 700$ ($=1$ part)
3) MULTIPLY TO FIND THE AMOUNTS:

We want to know Mo's share, which is 4 parts:
4 parts $=4 \times £ 700=£ 2800$

Watch out for pesky proportional division questions that don't give you the total amount. You can't just follow the method above, you'll have to be a bit more crafty.

A baguette is cut into 3 pieces. The second piece is twise as long as the first and the third piece is five times as long as the first.
a) Find the ratio of the lengths of the 3 pieces. Give your answer in its simplest form. If the first piece is 1 part, then the second piece is $1 \times 2=2$ parts and the third piece is $1 \times 5=5$ parts. So the ratio of the lengths $=1: 2: 5$.
b) The first piece is 28 cm smaller than the third piece. How long is the second piece?

1) Work out how many parts 28 cm makes up. $28 \mathrm{~cm}=3 \mathrm{rd}$ piece -1 st piece
$=5$ parts -1 part $=4$ parts
2) Divide to find one part
$28 \mathrm{~cm} \div 4=7 \mathrm{~cm}$
3) Multiply to find the length of the 2 nd piece.

2nd piece $=2$ parts $=2 \times 7 \mathrm{~cm}=14 \mathrm{~cm}$

7) Fractions of something

EXAMPLE:

What is $\frac{9}{20}$ of $£ 360$? ' $\frac{9}{20}$ of $£ 360^{\prime}$ ' means ' $\frac{9}{20} \times £ 360^{\prime}$ '. Multiply by the top of the fraction and divide by the bottom.

$$
\begin{aligned}
\frac{9}{20} \times £ 360 & =(£ 360 \div 20) \times 9 \\
& =£ 18 \times 9=£ 162
\end{aligned}
$$

(1111111111111111
The order that you multiply and divide in doesn't matter - just start with whatever's easiest.

4 In an office, the ratio of people who drink tea to people who drink coffee is $8: 5$, [2

How do we use Knowledge Organisers in Mathematics

How can you use knowledge organisers at home to help us?

- Retrieval Practice: Read over a section of the knowledge organiser, cover it up and then write down everything you can remember. Repeat until you remember everything.
- Flash Cards: Using the Knowledge Organisers to help on one side of a piece of paper write a question, on the other side write an answer. Ask someone to test you by asking a question and seeing if you know the answer.
- Mind Maps: Turn the information from the knowledge organiser into a mind map. Then reread the mind map and on a piece of paper half the size try and recreate the key phrases of the mind map from memory.
- Sketch it: Draw an image to represent each fact; this can be done in isolation or as part of the mind map/flash card.
- Teach it: Teach someone the information on your knowledge organiser, let them ask you questions and see if you know the answers.

How will we use knowledge organisers in Mathematics?

Knowledge organisers will be used before I complete a Learning Check or Common Assessment. I will spend part of the lesson looking over each of the key topics of the half term before completing the Learning Check or Common Assessment.
I will also use these at home to complete my own independent learning and revision of these key topics.

Mathematics (Foundation 1-3): Low Stake Test scores (Autumn)		
Topics	Date	Score
Fraction of an amount, Multiplying Fractions, Dividing Fractions, Sharing using Ratio, Area of a Triangle, Lowest Common Multiple (LCM) and Highest Common Factor HCF).		
Fraction of an amount, Multiplying Fractions, Dividing Fractions, Sharing using Ratio, Area of a Triangle, Lowest Common Multiple (LCM) and Highest Common Factor HCF).		
Fraction of an amount, Multiplying Fractions, Dividing Fractions, Sharing using Ratio, Area of a Triangle, Lowest Common Multiple (LCM) and Highest Common Factor HCF).		
Fraction of an amount, Multiplying Fractions, Dividing Fractions, Sharing using Ratio, Area of a Triangle, Lowest Common Multiple (LCM) and Highest Common Factor HCF).		
Fraction of an amount, Multiplying Fractions, Dividing Fractions, Sharing using Ratio, Area of a Triangle, Lowest Common Multiple (LCM) and Highest Common Factor HCF).		
Fraction of an amount, Multiplying Fractions, Dividing Fractions, Sharing using Ratio, Area of a Triangle, Lowest Common Multiple (LCM) and Highest Common Factor HCF).		
Fraction of an amount, Multiplying Fractions, Dividing Fractions, Sharing using Ratio, Area of a Triangle, Lowest Common Multiple (LCM) and Highest Common Factor HCF).		
Fraction of an amount, Multiplying Fractions, Dividing Fractions, Sharing using Ratio, Area of a Triangle, Lowest Common Multiple (LCM) and Highest Common Factor HCF).		
Fraction of an amount, Multiplying Fractions, Dividing Fractions, Sharing using Ratio, Area of a Triangle, Lowest Common Multiple (LCM) and Highest Common Factor HCF).		
Fraction of an amount, Multiplying Fractions, Dividing Fractions, Sharing using Ratio, Area of a Triangle, Lowest Common Multiple (LCM) and Highest Common Factor HCF).		
Fraction of an amount, Multiplying Fractions, Dividing Fractions, Sharing using Ratio, Area of a Triangle, Lowest Common Multiple (LCM) and Highest Common Factor HCF).		
Fraction of an amount, Multiplying Fractions, Dividing Fractions, Sharing using Ratio, Area of a Triangle, Lowest Common Multiple (LCM) and Highest Common Factor HCF).		

