

# Knowledge Organiser Year 10 Foundation 1-3 (Summer)

#### Fractions without a Calculator

## EXAMPLE:

Calculate  $2\frac{1}{5} - 1\frac{1}{2}$ .

Rewrite the <u>mixed numbers</u> as improper <u>fractions</u>:  $2\frac{1}{5} - 1\frac{1}{2} = \frac{11}{5} - \frac{3}{2}$ Find a common denominator:

Combine the top lines:

$$= \frac{22 - 15}{10} = \frac{7}{10}$$

#### **Ratios**

In a proportional division question a TOTAL AMOUNT is split into parts in a certain ratio. The key word here is PARTS — concentrate on 'parts' and it all becomes quite painless:

EXAMPLE: Jess, Mo and Greg share £9100 in the ratio 2:4:7. How much does Mo get?

1) ADD UP THE PARTS:

The ratio 2:4:7 means there will be a total of 13 parts:

$$2 + 4 + 7 = 13$$
 parts

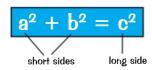
2) DIVIDE TO FIND ONE "PART":

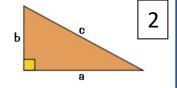
Just divide the total amount by the number of parts:

$$£9100 \div 13 = £700 (= 1 part)$$

3) MULTIPLY TO FIND THE AMOUNTS:

We want to know Mo's share, which is 4 parts:


$$4 \text{ parts} = 4 \times £700 = £2800$$


#### Pythagoras' Theorem is Used on Right-Angled Triangles

Pythagoras' theorem only works for RIGHT-ANGLED TRIANGLES.

It uses two sides to find the third side.

The formula for Pythagoras' theorem is:





The trouble is, the formula can be quite difficult to use. Instead, it's a lot better to just remember these three simple steps, which work every time:

**SQUARE THEM** 

SQUARE THE TWO NUMBERS that you are given, (use the R button if you've got your calculator.)

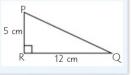
2) ADD or SUBTRACT

 $a^2 + b^2 = c^2$ To find the longest side, ADD the two squared numbers. To find a shorter side, SUBTRACI the smaller from the larger.  $c^2 - b^2 = a^2$ 

3) SQUARE ROOT

Once you've got your answer, take the **SQUARE ROOT** (use the button on your calculator).




EXAMPLES:

Find the length of side PQ in this triangle.

1) Square them:  $a^2 = 5^2 = 25$ ,  $b^2 = 12^2 = 144$ 

2) You want to find the longest side, so ADD:  $a^2 + b^2 = c^2$ 25 + 144 = 169

3) Square root:  $c = \sqrt{169} = 13$  cm

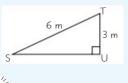


Always check the answer's sensible - 13 cm is longer than the other two sides, but not too much longer, so it seems OK.

2. Find the length of SU to 1 decimal place.

1) Square them:  $b^2 = 3^2 = 9$ ,  $c^2 = 6^2 = 36$ 

2) You want to find a shorter side, so SUBTRACT:  $c^2 - b^2 = a^2$ 


5x means  $5 \times x$ ,

so do the opposite -

divide both sides by 5

3) Square root:  $a = \sqrt{27} = 5.196...$ 





### **Solving Equations**



Solve x + 7 = 11. The opposite x + 7 = 11 of +7 is -7

This means 'take away 🖊 7 from both sides'. 

(-7) x + 7 - 7 = 11 - 7

2. Solve x - 3 = 7. The opposite x - 3 = 7 of -3 is +3 (+3) x-3+3=7+3

x = 10

3. Solve 5x = 15.

 $(\div 5)$  5x ÷ 5 = 15 ÷

x = 3

4. Solve  $\frac{x}{3} = 2$ .

means x ÷ 3, so do the opposite multiply both sides by 3



# How do we use Knowledge Organisers in Mathematics

### How can you use knowledge organisers at home to help us?

- Retrieval Practice: Read over a section of the knowledge organiser, cover it up and then write down everything
  you can remember. Repeat until you remember everything.
- **Flash Cards:** Using the Knowledge Organisers to help on one side of a piece of paper write a question, on the other side write an answer. Ask someone to test you by asking a question and seeing if you know the answer.
- **Mind Maps:** Turn the information from the knowledge organiser into a mind map. Then reread the mind map and on a piece of paper half the size try and recreate the key phrases of the mind map from memory.
- **Sketch it:** Draw an image to represent each fact; this can be done in isolation or as part of the mind map/flash card.
- **Teach it:** Teach someone the information on your knowledge organiser, let them ask you questions and see if you know the answers.

### How will we use knowledge organisers in Mathematics?

Knowledge organisers will be used before I complete a Learning Check or Common Assessment. I will spend part of the lesson looking over each of the key topics of the half term before completing the Learning Check or Common Assessment.

I will also use these at home to complete my own independent learning and revision of these key topics.



# Mathematics (Foundation 1-3): Low Stake Test scores (Autumn)



| Topics                                                                                                  | Date | Score |  |
|---------------------------------------------------------------------------------------------------------|------|-------|--|
| Adding Fractions, Subtracting Fractions, Sharing in a Ratio, Pythagoras' Theorem and Solving Equations. |      |       |  |
| Adding Fractions, Subtracting Fractions, Sharing in a Ratio, Pythagoras' Theorem and Solving Equations. |      |       |  |
| Adding Fractions, Subtracting Fractions, Sharing in a Ratio, Pythagoras' Theorem and Solving Equations. |      |       |  |
| Adding Fractions, Subtracting Fractions, Sharing in a Ratio, Pythagoras' Theorem and Solving Equations. |      |       |  |
| Adding Fractions, Subtracting Fractions, Sharing in a Ratio, Pythagoras' Theorem and Solving Equations. |      |       |  |
| Adding Fractions, Subtracting Fractions, Sharing in a Ratio, Pythagoras' Theorem and Solving Equations. |      |       |  |
| Adding Fractions, Subtracting Fractions, Sharing in a Ratio, Pythagoras' Theorem and Solving Equations. |      |       |  |
| Adding Fractions, Subtracting Fractions, Sharing in a Ratio, Pythagoras' Theorem and Solving Equations. |      |       |  |
| Adding Fractions, Subtracting Fractions, Sharing in a Ratio, Pythagoras' Theorem and Solving Equations. |      |       |  |
| Adding Fractions, Subtracting Fractions, Sharing in a Ratio, Pythagoras' Theorem and Solving Equations. |      |       |  |
| Adding Fractions, Subtracting Fractions, Sharing in a Ratio, Pythagoras' Theorem and Solving Equations. |      |       |  |
| Adding Fractions, Subtracting Fractions, Sharing in a Ratio, Pythagoras' Theorem and Solving Equations. |      |       |  |
|                                                                                                         |      |       |  |