

Knowledge Organiser: Year 11 (H)

Fractions without a Calculator

3) Multiplying 3)

Multiply top and bottom separately. Then simplify your fraction as far as possible.

EXAMPLE: Find $\frac{8}{5} \times \frac{7}{12}$. $\frac{8}{5} \times \frac{7}{12} = \frac{8 \times 7}{5 \times 12}$ Multiply the top and bottom separately: Then simplify — top and bottom both divide by 4.

4) Dividing When you're multiplying or dividing = Turn the 2nd fraction UPSIDE DOWN and then multiply: EXAMPLE: Find $2\frac{1}{2} \div 3\frac{1}{2}$. Rewrite the <u>mixed numbers</u> as improper <u>fractions</u>: $2\frac{1}{3} \div 3\frac{1}{2} = \frac{7}{3} \div \frac{7}{2}$ Turn $\frac{7}{2}$ upside down and multiply: $=\frac{7}{3} \times \frac{2}{7} = \frac{7 \times 2}{3 \times 7}$ $=\frac{14}{21}=\frac{2}{2}$ Simplify — top and bottom both divide by 7.

 $=\frac{56}{60}=\frac{14}{15}$

6) Adding, subtracting — sort the denominators first

- Make sure the denominators are the same (see above). 1)
- 2) Add (or subtract) the top lines only.

If you're adding or subtracting mixed numbers, it usually helps to convert them to improper fractions first.

- 1) You can use vectors to show that points lie on a straight line.
- 2) You need to show that the vectors along each part of the line point in the same direction - i.e. they're scalar multiples of each other.

If XYZ is a straight line then \overrightarrow{XY} must be a scalar multiple of \overrightarrow{YZ}

'u-intercept' (where it hits the

y-axis)

10

$\mathbf{v} = \mathbf{m}\mathbf{x} + \mathbf{c}$

Using 'y = mx + c' is the most straightforward way of dealing with straight-line equations, and it's very useful in exams. The first thing you have to do though is rearrange the equation into the standard format like this:

Straight line:		Rearranged into	y' = mx + c'	where:
y = 2 + 3x	\rightarrow	y = 3x + 2	(m = 3, c = 2)	' <u>m</u> ' = <u>gradient</u> of the line.
x - y = 0	\rightarrow	$\mathbf{y} = \mathbf{x} + 0$	(m = 1, c = 0)	$'\underline{c}' = '\underline{u}$ -intercept' (where it
4x - 3 = 5y	\rightarrow	$y = \frac{4}{5}x - \frac{3}{5}$	$(m = \frac{4}{5}, c = -\frac{3}{5})$	
				Г

WATCH OUT: people mix up 'm' and 'c' when they get something like y = 5 + 2x. Remember, 'm' is the number in front of the 'x' and 'c' is the number on its own.

Finding the Equation of a Straight-Line Graph

When you're given the graph itself, it's quick and easy to find the equation of the straight line.

How can you use knowledge organisers at home to help us?

- **Retrieval Practice**: Read over a section of the knowledge organiser, cover it up and then write down everything you can remember. Repeat until you remember everything.
- Flash Cards: Using the Knowledge Organisers to help on one side of a piece of paper write a question, on the other side write an answer. Ask someone to test you by asking a question and seeing if you know the answer.
- **Mind Maps:** Turn the information from the knowledge organiser into a mind map. Then reread the mind map and on a piece of paper half the size try and recreate the key phrases of the mind map from memory.
- Sketch it: Draw an image to represent each fact; this can be done in isolation or as part of the mind map/flash card.
- **Teach it:** Teach someone the information on your knowledge organiser, let them ask you questions and see if you know the answers.

How will we use knowledge organisers in Mathematics?

Knowledge organisers will be used before I complete a Learning Check or Common Assessment. I will spend part of the lesson looking over each of the key topics of the half term before completing the Learning Check or Common Assessment.

I will also use these at home to complete my own independent learning and revision of these key topics.

Year 11 Mathematics (Higher): Low Stake Test scores (Autumn)

Topics	Date	Score
Mixed numbers (4 operations), Estimation, Negative Indices, Fractional Indices, Tree diagrams and Simplifying algebraic fractions.		
Venn diagrams, Vectors, Iteration, Simultaneous linear equations and the equation of a line.		
Pythagoras, Trigonometry, Area of a segment, Fractional equations, changing the subject of a formula, Quadratic formula and quadratic nth term.		
Mixed numbers (4 operations), Estimation, Negative Indices, Fractional Indices, Tree diagrams and Simplifying algebraic fractions.		
Venn diagrams, Vectors, Iteration, Simultaneous linear equations and the equation of a line.		
Pythagoras, Trigonometry, Area of a segment, Fractional equations, changing the subject of a formula, Quadratic formula and quadratic nth term.		
Mixed numbers (4 operations), Estimation, Negative Indices, Fractional Indices, Tree diagrams and Simplifying algebraic fractions.		
Venn diagrams, Vectors, Iteration, Simultaneous linear equations and the equation of a line.		
Pythagoras, Trigonometry, Area of a segment, Fractional equations, changing the subject of a formula, Quadratic formula and quadratic nth term.		
Mixed numbers (4 operations), Estimation, Negative Indices, Fractional Indices, Tree diagrams and Simplifying algebraic fractions.		
Venn diagrams, Vectors, Iteration, Simultaneous linear equations and the equation of a line.		
Pythagoras, Trigonometry, Area of a segment, Fractional equations, changing the subject of a formula, Quadratic formula and quadratic nth term.		