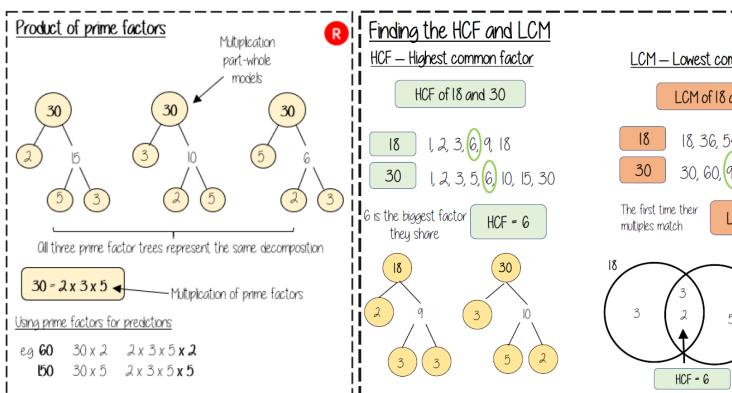
Knowledge Organiser: Year 7 Maths; Structure of number – Fractions (Part 1)


Factor: numbers we multiply together to make another number Multiple: the result of multiplying a number by an integer.

_CM: lowest common multiple

The first multiple numbers share

biggest factor that numbers share

Multiples The "times table" of a given number R | Factors Prime numbers Integer • • • Orraus can help represent factors • Factors of 10 Only has 2 factors 10 x 1 or 1 x 10 5 x 2 or 2 x 5 1, 2, 5, 10 and itself The first prime number The number itself is The only even prime number Factors and expressions always a factor |x| |x| |x| |x| |x| |x|Factors of 6x Learn or how-to quick recall... 6, x, 1, 6x, 2x, 3, 3x, 2 $6x \times 1$ OR $6 \times x$ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29... $x \mid x$ $x \mid x$

All the numbers in this lists below are multiples of 3

Not an integer

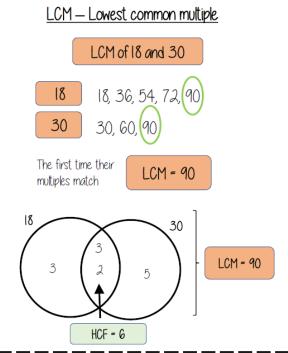
3x, 6x, 9x ...

x could take any value and

as the variable is a multiple of

3 the answer will also be a

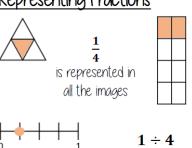
multiple of 3

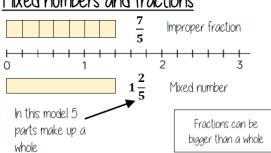

3, 6, 9, 12, 15...

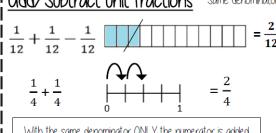
This list continues and doesn't

4.5 is not a multiple of 3

because it is 3×1.5


Non example of a multiple

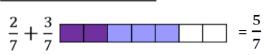

Knowledge Organiser: Year 7 Maths; Structure of number – Fractions (Part 2)



Mixed numbers and fractions

Odd/Subtract unit fractions Same denominator

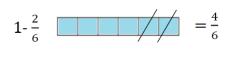
With the same denominator ONLY the numerator is added or subtracted


Equivalent fractions

- 413

Numerator and denominator have

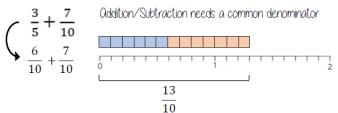
<u>Odd/Subtract fractions</u>

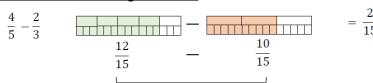

Sequences

 $\frac{1}{3}$, 1, $1\frac{2}{3}$, $2\frac{1}{3}$, 3,...

Represent this on a number line to help

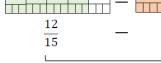
Same denominator 11 Odd/Subtract from integers

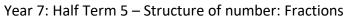


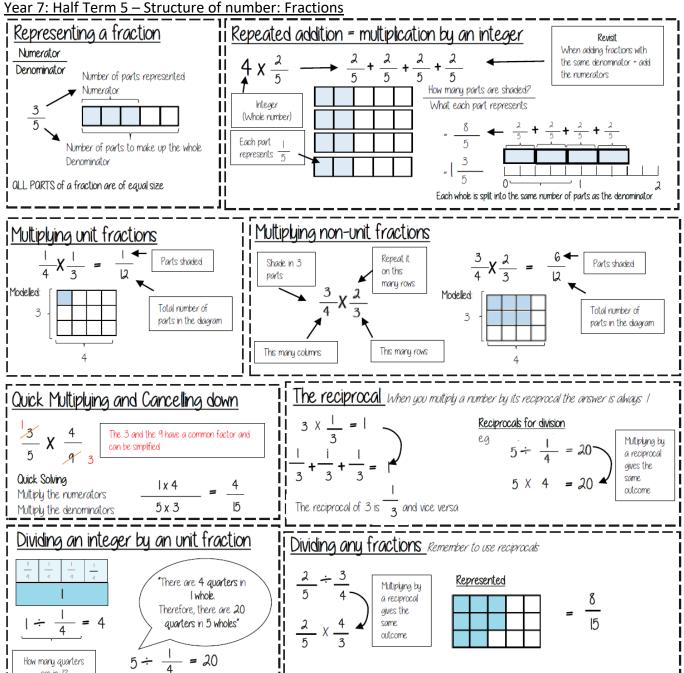

of parts a whole is made up of

The denominator indicates the number

Odd/Subtraction fractions (common multiples)


Odd/Subtraction any fractions




Use equivalent fractions to find a common multiple for both denominators

Denominator: the number below the fraction. The number represent the total number of parts

Commutative: an operation is commutative it changing

order does not change the result

Reciprocal: a pair of **Quotient**: the answer after we divide one number by another. e.g. numbers that multiply together to give

Non-unit Fraction: a fraction where the numerator is larger than one

How do we use Knowledge Organisers in Mathematics?

How can you use knowledge organisers at home to help us?

- **Retrieval Practice**: Read over a section of the knowledge organiser, cover it up and then write down everything you can remember. Repeat until you remember everything.
- **Flash Cards:** Using the Knowledge Organisers to help on one side of a piece of paper write a question, on the other side write an answer. Ask someone to test you by asking a question and seeing if you know the answer.
- **Mind Maps:** Turn the information from the knowledge organiser into a mind map. Then reread the mind map and on a piece of paper half the size try and recreate the key phrases of the mind map from memory.
- **Sketch it**: Draw an image to represent each fact; this can be done in isolation or as part of the mind map/flash card.
- **Teach it**: Teach someone the information on your knowledge organiser, let them ask you questions and see if you know the answers.

How will we use knowledge organisers in Mathematics?

Knowledge organisers will be used before I complete a Learning Check or Common Assessment. I will spend part of the lesson looking over each of the key topics of the half term before completing the Learning Check or Common Assessment.

I will also use these at home to complete my own independent learning and revision of these key topics.